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Abstract

I develop a simple model to study how the interplay between institutions’

and hackers’ incentives can alter cyber risk within an equilibrium context.

By formalizing the strategic interaction between institutions and hackers, the

model characterizes how changes in heterogeneity across institutions, cybersecurity

technologies, and hacker competition can lead to material shifts in cyber risk.
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Highlights:

• The model establishes an equilibrium link between the distribution of cyberattacks

and the size distribution of institutions.

• When hackers’ rewards are increasing in the size of their targets, my results

are consistent with the observed concentration of cyberattacks among larger

institutions.

• As cybersecurity technologies improve or hacker competition intensifies, institutions

invest less on cybersecurity while hackers face weaker incentives to attack and

become less selective in their targeting.
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1 Introduction

In recent years, cyber risk has become a pressing concern for investors, businesses,

regulators, and academics alike.1 Yet much of the existing literature overlooks equilibrium

considerations in its assessments. This oversight likely stems from the challenges of

observing the actions of both hackers and institutions, coupled with the lack of consensus

on how their motivations interact in equilibrium.2 To fill this gap, I propose a model

that links the motivations of hackers and institutions within an equilibrium framework,

offering a clearer understanding of how basic economic factors can reshape cyber risk.

My model incorporates two key features. First, institutions and hackers would like to

outguess one another before making decisions. Second, hackers’ rewards are influenced

by both the size of their targets and the effectiveness of cybersecurity technologies. With

this model in hand, I establish a mapping between the distribution of cyberattacks and

the size distribution of institutions, and explore how changes in heterogeneity across

institutions, cybersecurity technologies, and hacker competition can alter cyber risk.

Within my model, the link between hackers’ rewards and the size of their targets

plays a key role in shaping equilibrium behavior. I show that when hackers’ rewards

increase (decrease) with the size of their targets, larger (smaller) institutions invest more

in cybersecurity as they are targeted more frequently. In this case, larger (smaller)

institutions also become less (more) attractive targets as cybersecurity technologies

improve. Additionally, I show that institutions invest less on cybersecurity while hackers

face weaker incentives to attack and become less selective in their targeting when

cybersecurity technologies improve or hacker competition intensifies. Although both

heterogeneity across institutions and cybersecurity technologies influence equilibrium

behavior, their impact on cyber risk diminishes as hacker competition intensifies.

My findings contribute to the rapidly expanding literature on the drivers and

consequences of cyber risk. Within this literature, Ahnert et al. (2024) and Anand et al.

(2024) are the most closely related to my work. Ahnert et al. (2024) study how

regulators can correct inefficiencies engendered by the lack of observability in firms’

1World Economic Forum Report and Federal Reserve Board Report underscore concerns of busi-
nesses and regulators about the consequences of cyberattacks. Duffie and Younger (2019)
and Kashyap and Wetherilt (2019) highlight the potential systemwide implications of cyberattacks and
the policy challenges that stem from them.

2See Ablon (2018) and Chng et al. (2022) for a description of hackers’ motivations.
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decisions. Anand et al. (2024) explore how cyberattacks influence banks’ decision-making

and their likelihood of runs. While our work shares an interest in the interaction between

institutions and hackers, my paper is the first to explore how the interplay between

cybersecurity technologies, heterogeneity across institutions, and hacker competition can

reshape cyber risk in equilibrium.3

2 The Hacking Game

Though stylized, the baseline model conveys the main intuition for how institutions’

and hackers’ motivations jointly shape cyber risk in equilibrium. The Online Appendix

shows that this model can be extended to incorporate: heterogeneity in bargaining power,

alternative costs structures, and uncertainty about the precise impact of cyberattacks.

Consider an economy consisting of a unit continuum of institutions (firms, for short),

each varying in size, alongside a single hacker motivated purely by financial gain. I focus

on games wherein firms and the hacker choose actions simultaneously, and their payoffs

(which are common knowledge) depend on a combination of their selected actions.

Consider a firm of size s ∈ (0, 1) and the hacker. The proposed game—referred to as

the Hacking Game—shares a distinguishing feature with the game of Matching Pennies:

both players would like to outguess one another before selecting their actions.4 The firm

would like to anticipate whether the hacker will attack before investing in cybersecurity,

while the hacker would like to know how much the firm invests in cybersecurity before

attacking.

Because the solution of this game involves uncertainty about what players will do,

let qs denote the probability that a firm of size s chooses to defend itself and ps denote

the probability that the hacker chooses to target such a firm. Define v(s) as the value of

3The Online Appendix provides a more detailed discussion of the differences between my model
and Ahnert et al. (2024) and Anand et al. (2024). By theoretically studying the interaction between
institutions and hackers, my paper also complements (1) the literature that explores the connection
between firms’ characteristics and the likelihood of cyberattacks and (2) the literature that studies
the impact of cyberattacks. Aldasoro et al. (2020) and Chang et al. (2024) document relationships
between the size of institutions and the likelihood of cyberattacks. Jamilov et al. (2021), Kamiya et al.
(2021), Florackis et al. (2023), and Jiang et al. (2024) underscore the impact of cyber risk on stock
returns, while Curti et al. (2023) show that hacks can increase the financing costs of state and local
governments. Eisenbach et al. (2022), Kotidis and Schreft (2022), Crosignani et al. (2023) emphasize how
hacks can affect different industries via propagation along supply chains, payment systems, or technology
providers.

4See (Gibbons, 1992, chap 1.3).
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that firm vulnerable to cyberattacks—where v(·) is an arbitrary continuous function of s

satisfying 0 ≤ v(s) < 1, ∀s. Let α ∈ (0, 1). For a given tuple of choice variables (qs, ps),

Table 1 reports the payoffs of both players.5

Hacker | Firm of size s Defend Do not defend

with prob. qs with prob. (1− qs)

Attack Hacker: (1−α)v(s)
2

− ps Hacker: (1− α)v(s)− ps
with prob. ps Firm: αv(s) + (1−α)v(s)

2
− qs Firm: αv(s)

Do not attack Hacker : 0 Hacker : 0
with prob. (1− ps) Firm: v(s)− qs Firm: v(s)

Table 1: Matrix of payoffs

Explanation of payoffs.—To appreciate how motivations manifest in the Hacking

Game, it is useful to analyze Table 1. When the hacker attacks and the firm does

not defend itself, the firm’s payoff is αv(s) while the hacker’s payoff is (1− α)v(s)− ps.

That is, the firm gets a fraction α of v(s) while the hacker gets the remaining fraction—

net of the costs of implementing the hack, ps. The hacker’s rewards, (1 − α)v(s), serve

as a metaphor for the expected value that is lost to cyberattacks. Thus, parameter α

can be thought of as firms’ recovery rate in the face of hacks. Intuitively, α reflects

the effectiveness of cybersecurity technologies relative to cyberattack technologies: more

effective cybersecurity technologies are associated with a higher α. As α → 1 hacks are

expected to be harmless, while the opposite happens as α → 0.

When the hacker attacks and firm defends itself, the firm’s payoff is αv(s)+ (1−α)v(s)
2

−

qs. The first term, αv(s), represents the payoff of a firm that chooses not to defend itself.

The second term, (1−α)v(s)
2

, relates to the expected impact of cyberattacks, (1 − α)v(s).

For simplicity, I assume that (1−α)v(s) is divided equally among players when both exert

effort, and, thus, the hacker’s payoff is (1−α)v(s)
2

− ps.
6 The third term, −qs, captures the

firm’s cost of investing in cybersecurity. Consequently, qs can also be interpreted as how

aggressively the firm invests in cybersecurity, while ps can be interpreted as the hacking

intensity on such a firm.7

5In any game in which players would like to outguess one other, there is no Nash equilibrium in pure
strategies, as the solution involves uncertainty about what players will do.

6Players are implicitly assumed to have equal bargaining power. The Online Appendix shows that
introducing differential bargaining power between players only complicates notation without materially
changing the qualitative nature of my results.

7Incorporating (qs, ps) into payoffs as in Table 1 not only enriches the model, as it helps it to account
for the costs associated with cyberattacks and cybersecurity investments, but also ensures the uniqueness
of the equilibrium by enforcing concavity in the expected payoffs of both players.
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Intuitively, firms would opt to defend if the hacker attacks. And firms prefer not to

defend themselves if the hacker does not attack. While firms obtain higher payoffs when

there is no attack, the hacker gains nothing from abstaining.

Best Response Functions.—Solving the first-order conditions of both players yields:

q∗(v, ps) =

(
1− α

4

)

psv and p∗(v, qs) =

(
1− α

2

)(

1−
qs
2

)

v (1)

That is, a firm’s best response, q∗(v, ps), increases with both its value vulnerable to

hacks, v, and the likelihood/intensity of being targeted, ps. And it decreases with

the effectiveness of cybersecurity technologies, α. In turn, the hacker’s best response,

p∗(v, ps), increases with v and decreases with both α and qs. Intuitively, the system

of equations (1) reflects both (a) the hacker’s understanding that firms invest more in

cybersecurity when they are more likely to be targeted and (b) firms’ understanding that

increasing cybersecurity discourages the hacker from targeting them.

Equilibrium.—In equilibrium, players have no unilateral incentive to deviate as their

strategies are best responses to one another. The next proposition demonstrates that the

Hacking Game has a unique equilibrium.

PROPOSITION 1 The simultaneous move game between the hacker and firms has a

unique equilibrium. In such equilibrium, a firm of size s faces a targeting probability of

pes while investing qes in cybersecurity, where

pes =
(1− α)v(s)

2
(

1 + (1−α)2

16
v2(s)

) and qes =
(1− α)2v2(s)

8
(

1 + (1−α)2

16
v2(s)

) . (2)

Proposition 1 shows that the equilibrium distribution of cyberattacks, captured by pes,

and firms’ cybersecurity investments, captured by qes, are intimately linked to firms’

size distribution—via function v(·)—and reshaped by the effectiveness of cybersecurity

technologies, α.

Equilibrium Characteristics.—The next lemma underscores the role of cybersecurity

technologies and firm heterogeneity on equilibrium cyber risk.

LEMMA 1 pes and qes decrease with α. In addition, sign
(

∂pe
s

∂s

)

= sign
(

∂qe
s

∂s

)

= sign
(
∂v
∂s

)

and sign
(

∂2pe
s

∂s∂α

)

= sign
(

∂2qe
s

∂s∂α

)

= −sign
(
∂v
∂s

)
, where sign(·) denotes the sign function.
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Lemma 1 highlights three important observations about equilibrium behavior. The

first observation relates to how changes in cybersecurity technologies directly alter cyber

risk. As cybersecurity technologies become more effective, the hacker faces weaker

incentives to attack. In response, firms invest less in cybersecurity.

The next two observations relate to the role of firm heterogeneity on cyber risk. First,

the direction in which pes and qes change with s is entirely determined by v(·). Specifically,

pes and qes increase with s only if v(·) is an increasing function. When v(·) is increasing

(decreasing), hackers opt to target larger (smaller) firms as they obtain higher rewards.

As larger firms are expected to be targeted more (less) often, they invest more (less)

on cybersecurity. Thus, when v(·) is an increasing function, the model’s results are

consistent with the observed concentration of cyberattacks among larger institutions—

see, Chang et al. (2024).

The second observation relates to the interplay between firm heterogeneity and

cybersecurity technologies, which manifest itself in the cross-derivatives ∂2pe
s

∂s∂α
and ∂2qe

s

∂s∂α
.

In particular, whether ∂pe
s

∂α
and ∂qe

s

∂α
become more or less negative as s increases depends

on v(·). To illustrate this point, suppose v(·) increases (decreases) with s. As

cybersecurity technologies become less effective, larger firms experience a relatively more

(less) pronounced increase in their hacking intensity when compared to smaller firms. This

is because the hacker obtains a larger (smaller) gain per unit of investment when targeting

larger firms. In response, larger firms invest relatively more (less) in cybersecurity.

Illustrative Examples.—To illustrate the relevance of the above observations, assume

that s follows a Beta distribution with long right tails, making it comparable to the size

distribution across U.S. firms. To fix ideas, consider s
d
∼ β(2, 8). Figure 1a depicts the

distributions of both of s and pes under various parameter configurations while considering

two distinct functions for v(s). The first function, v(s) = s, is increasing in s, while the

second one, v(s) = e−s, is decreasing in s. For each of these functions, figure 1b depicts

the size of the average target, E[st], as a function of α.

Figure 1 shows that, irrespective of the functional form for v(·), the average targeted

firm becomes smaller as cybersecurity technologies become more effective. This is because

pes decreases linearly with α. Notably, changes in cybersecurity technologies also influence

the hacker’s targeting strategy. An increase in α not only increases the frequency of

smaller values of pes, but also causes the entire probability density function of pes to
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Figure 1: Impact of function v(·) and α on the size of the average target.

become more concentrated around its mean. That is, targeting becomes less tailored as

cybersecurity technologies become more effective.8

3 The Hacking Game with Competition

This section explores how competition among hackers can modify firms’ and hackers’

incentives, ultimately reshaping cyber risk. Besides a unit continuum of firms, consider

an economy with n ≥ 2 hackers that compete when targeting firms. For ease of exposition,

I consider economies wherein hacking rewards are split equally among hackers and firms’

payoffs are independent of n.9 For tractability, I focus on equilibria wherein hackers

choose the same strategy.

Table 2 reports players’ payoffs in an extended version of the Hacking Game that

accounts for hacker competition. Reported values consider a firm of size s and an

individual hacker—where qs and ps are defined as before. Panel A assumes that the

remaining (n− 1) hackers attack, while panel B assumes that they do not attack.

Before characterizing the equilibrium, it is useful to highlight two key observations that

8The Online Appendix also shows that when v(·) is an increasing (decreasing) function, the size of
the average targeted firm increases (decreases) as firms become more heterogeneous in size. Because it is
more profitable to target larger (smaller) firms, the size of average target increases (decreases) as larger
(smaller) firms become more common.

9Although assuming that payoffs are divided equally among hackers is not essential, it helps removing
equilibrium considerations associated with heterogeneity in bargaining power among hackers. The Online
Appendix shows that my results hold even when firms’ payoffs directly depend on n.
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Panel A: remaining (n− 1) hackers attack
Hacker | Firm of size s Defend Do not defend

with prob. qs with prob. (1− qs)

Attack Hacker: (1−α)v(s)
2n

− ps Hacker: (1−α)v(s)
n

− ps
with prob. ps Firm: αv(s) + (1−α)v(s)

2
− qs Firm: αv(s)

Do not attack Hacker : 0 Hacker : 0

with prob. (1− ps) Firm: αv(s) + (1−α)v(s)
2

− qs Firm: αv(s)

Panel B: remaining (n− 1) hackers do not attack
Hacker | Firm of size s Defend Do not defend

with prob. qs with prob. (1− qs)

Attack Hacker: (1−α)v(s)
2

− ps Hacker: (1− α)v(s)− ps
with prob. ps Firm: αv(s) + (1−α)v(s)

2
− qs Firm: αv(s)

Do not attack Hacker : 0 Hacker : 0
with prob. (1− ps) Firm: v(s)− qs Firm: v(s)

Table 2: Matrix of payoffs with competition among n ≥ 2 hackers

help distill the role of competition on equilibrium outcomes. First, a hacker’s incentives

to attack diminish rapidly as n grows—which is interpreted as intensified competition

hereinafter. To illustrate this observation, assume ps ≤ 1/2. Given (ps, qs), a hacker’s

expected payoffs equals

E[πhacker(ps)|qs] = pns

{

qs

(
(1− α)v

2n
− ps

)

+ (1− qs)

(
(1− α)v

n
− ps

)}

︸ ︷︷ ︸

other hackers attack

(3)

+ ps(1− ps)
n−1

{

qs

(
(1− α)v

2
− ps

)

+ (1− qs) ((1− α)v − ps)

}

︸ ︷︷ ︸

other hackers do not attack

= O((1− ps)
n) as n → ∞.

That is, E[πhacker(ps)|qs] decline at a rate of (1 − ps)
n when n grows large. Hence, an

individual hacker’s incentives to attack decrease quickly as competition intensifies.10

Second, hackers’ actions become less responsive to firms’ behavior as competition

intensifies. To illustrate this observation, let us consider how n affects a hacker’s rewards

when other hackers attack. When the firm defends itself, (1 − α)v is divided between

the firm and hackers—where the firm gets half of (1− α)v while hackers collectively get

10Let f(·) and g(·) denote two functions of n. I write f(n) = O(g(n)) as n → ∞ if there exist λ > 0
and n0 ∈ N such that |f(n)| ≤ λ |g(n)| for all n ≥ n0. For ease of exposition, equation 3 assumes
ps ≤ 1/2. If ps > 1/2, then E[πhacker(ps)|qs] = O (pn

s
).
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the other half. When the firm opts not to defend itself, (1 − α)v is divided only among

hackers. Therefore, from an individual hacker’s perspective, the difference in payoffs

between these cases becomes relevant as it captures the extent to which firms’ behavior

affects her expected payoffs.

0 (1−α)v(s)
2n

− ps
others attack

and firm defends
itself

(1−α)v(s)
n

− ps
others attack

and firm does not
defend itself

(1−α)v(s)
2

− ps
others do not attack

and firm defends
itself

(1− α)v(s)− ps
others do not attack
and firm does not

defend itself

∆

Figure 2: A hacker’s payoffs from choosing ps when n ≥ 3.

Figure 2 illustrates this difference, labeled as ∆. Intuitively, ∆ = (1−α)v(s)
2n

represents

the reward an individual hacker forgoes when the firm defends itself. As ∆ diminishes, the

hacker becomes less sensitive to firms’ actions. Consequently, as competition intensifies,

hackers’ actions become less responsive to changes in firms’ behavior, and, as a result,

also less responsive to changes in both α and v(s).

Equilibrium.— The next proposition demonstrates that there is a unique equilibrium

wherein hackers select the same strategy.

PROPOSITION 2 The simultaneous move game between n ≥ 2 hackers and firms has

a unique equilibrium wherein hackers choose the same strategy. In such an equilibrium, a

firm of size s faces a targeting probability of pes while investing qes in cybersecurity, where

pes and qes solve

qes =

(
1− α

4

)(
(pes)

n−1 + pes(1− pes)
n−1

(pes)
n−1 + pes(1− pes)

n−1 + (1− pes)
n

)

v(s), (4)

pes = argmaxE[πhacker(ps)|q
e
s].

Consistent with previous results, a firm’s cybersecurity strategy, qes, increases with its

value vulnerable to hacks, v(s), and decreases with the effectiveness of cybersecurity

technologies, α. While qes also increases with pes, the precise relationship between qes and

pes is reshaped by the intensity of hacker competition, n.

Because of the lack of closed form solutions of (4), I solve the model numerically and

present comparative statics results in figures. Figure 3 depicts pes and qes as a function of

v and α for different values of n. As the first observation highlights, hackers’ incentives
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Figure 3: pe and qe as a function of v, α, and n.

to attack diminish rapidly as competition intensifies. And, as the second observation

highlights, pe becomes less sensitive to changes in v and α when n grows—all of which

is illustrated by figs. 3a and 3c. Importantly, because firms anticipate this behavior,

they also decrease their cybersecurity investments, qes, in a manner that reflects hackers’

behavior—as illustrated by figs. 3b and 3d. In sum, increased competition not only

decreases hacking incentives and cybersecurity investments, but also reduces the influence

of both cybersecurity technologies, α, and firms’ vulnerability to cyberattacks, v(s), on

equilibrium outcomes, pes and qes.

Competition and the distribution of cyberattacks.—The previous observations have
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also an implication for the distribution of cyberattack intensities. Because hackers become

less concerned with the precise value of v(s) as n grows, they also become less concerned

about firm heterogeneity as n grows. Consequently, the probability density function (pdf)

of pes not only moves to the left but also becomes more concentrated around its mean

as competition increases. In other words, targeting becomes less tailored as competition

intensifies. Figure 4a illustrates this point. To fix ideas, figure 4a assumes that s
d
∼ β(2, 8),

v(s) ∈ {s, e−s}, and α = 0.1.
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(a) f(pes) when s
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∼ β(2, 8).
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(b) E[st](α) when s
d
∼ β(2, 8).

Figure 4: Impact of v(·) and n on the distribution of pes and E[st].

Random targeting. Figure 4a also helps uncovering a limiting result. As n grows

large, the pdf of pes approaches a distribution which assigns positive probability to a

single value. Notably, this outcome would be equivalent to an economy wherein hackers

target firms uniformly at random as every firm faces the same targeting probability. That

is, random targeting becomes observationally equivalent to an economy wherein infinitely

many hackers compete.11

Competition and the size of the average target.—Figure 4b highlights that increased

competition can alter how E[st] decreases with α. As competition intensifies, hacking

rewards become smaller, causing hackers to pay less attention to changes in α. As a

result, the magnitude of
∣
∣
∣
∂E[st]
∂α

∣
∣
∣ decreases as n increases. That is, the size of the average

target becomes less sensitive to variation in cybersecurity technologies as competition

intensifies.

11The Online Appendix provides further support for this result.
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4 Conclusion

I propose a simple model to study how cyber risk can be influenced by the motivations

of both institutions and hackers. By establishing a flexible mapping that connects the

distribution of cyberattacks to the size distribution of institutions, my model provides

insights into how changes in cybersecurity technologies, heterogeneity across institutions,

and hacker competition can reshape cyber risk in equilibrium. My findings underscore the

importance of understanding the strategic interaction between institutions and hackers

when assessing cyber risk.
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